青岛能源所在锂金属电池研究中取得进展

2019年05月07日 8:16 14982次浏览 来源:   分类:

随着经济全球化以及科技的快速发展,人类对能源的需求日益增加,尤其是近年来电动汽车和移动电子设备的蓬勃发展,高能量密度储能材料成为科学研究的焦点。尽管传统的以石墨为负极材料的插层式锂离子电池在电子设备产品市场中占据重要地位,然而它的能量密度已经接近其上限,逐渐无法满足消费者的使用需求。与插层式的锂离子电池相比,以金属锂直接作为负极使用的锂金属电池(如Li-S,Li-O2等电池体系)在能量密度方面表现出得天独厚的优势,已经成为近期的研究热点。然而,金属锂阳极在使用过程中表现出许多亟待解决的实际问题。首先,它具有极高的电化学还原性能,在充放电过程中极易与电解液反应,大量消耗活性锂和电解液。其次,不可控的枝晶生长和电极体积变化以及逐渐积累的副反应产物和“死锂”始终是金属锂阳极面临的严峻问题。依托中国科学院青岛生物能源与过程研究所建设的青岛储能产业技术研究院研究人员深入分析了锂金属的特性,考虑到实际应用中的客观情况,首先从原位实时形成角度来构筑人造界面(Chem. Mater. 2017, 29, 4682-4689),实现负极稳定的锂沉积和脱出;此外,工作人员对锂金属电池用电解液进行优化,分别设计了含有添加剂的双盐电解液(Small, 2019, 1900269),改性聚碳酸亚乙烯酯基高电压聚合物电解质(J. Mater. Chem. A, 2019, 7, 5295-5304)以及刚柔并济的高锂离子迁移系数的复合电解质(Small, 2018, 14, 1802244),对金属锂阳极的界面进行有效的改性调控,对开发高能的锂金属二次电池具有较好的指导意义。其中,实验所用添加剂为青岛储能院自主开发的新型大阴离子结构的全氟叔丁氧基三氟硼酸锂(LiTFPFB)。

随着锂金属阳极保护工作的不断深入,研究人员对锂金属电池中的锂枝晶和“死锂”导致的失效机理越发关注,但是由于两者相似的形貌,如何观测和区分两者是一个非常有挑战的课题,而这个问题对于了解电池失效机理和预测锂金属电池的循环寿命极其重要。为描述锂金属负极表面活性锂物种分布,并区分锂枝晶和“死锂”,青岛储能院的研究人员受分析化学中荧光探针方法的启发,设计了一种 9,10-二甲基(DMA)荧光探针,通过传统可见光学手段完成了这项任务,该技术得到国际同行的肯定,相关成果撰写了题目为Fluorescence Probing of Active Lithium Distribution for Lithium Metal Anode 的科研论文(Angewandte Chemie International Edition,2019,DOI:10.1002/anie.201900105)。

在电池进行充放电循环后,金属锂负极表面可能会产生副产物积累(大量副产物包覆会使活性锂失活,即产生“死锂”)。因此研究人员将荧光小分子DMA均匀涂覆在循环后的锂金属表面。由于DMA可以与活性锂发生荧光猝灭的反应,而在副产物表面保持稳定,因此可以表征锂离子电池阳极表面活性锂及其副产物在各种电解质中的分布情况,为锂离子电池电解质的选择提供了重要的参考依据;在锂沉积溶解过程中,副产物的积累被可视化和半定量地识别出来,可以把电池的性能衰减与副产物的量联系起来,实现对电池性能失效的防控预警;在循环后的锂负极表面可以清楚地识别出锂枝晶和“死锂”的位置,能够对失效电池进行原因分析。这项技术为锂金属电池的失效机理分析提供了一个思路和方向。

相关系列研究获得国家自然科学基金杰出青年科学基金、新能源汽车固态电池项目、中科院深海先导专项、山东省重点研发计划基金、中科院青年促进会基金等的支持。

1

(a)DMA与锂金属表面成分反应示意图;(b)TEGDME/DME(1:1)中5 mg mL-1的DMA被金属锂处理前后(蓝线为处理前,红线为处理后)的发射光谱曲线;(c)DMA探针法观察循环后锂金属表面活性锂分布的过程

责任编辑:周大伟

如需了解更多信息,请登录中国有色网:www.no-pilot.com了解更多信息。

中国有色网声明:本网所有内容的版权均属于作者或页面内声明的版权人。
凡注明文章来源为“中国有色金属报”或 “中国有色网”的文章,均为中国有色网原创或者是合作机构授权同意发布的文章。
如需转载,转载方必须与中国有色网( 邮件:cnmn@cnmn.com.cn 或 电话:010-63971479)联系,签署授权协议,取得转载授权;
凡本网注明“来源:“XXX(非中国有色网或非中国有色金属报)”的文章,均转载自其它媒体,转载目的在于传递更多信息,并不构成投资建议,仅供读者参考。
若据本文章操作,所有后果读者自负,中国有色网概不负任何责任。